SYMPOSIUM

PART 3

The Role of Care in Bringing Human and Social Capital to Life in Nursing

William P. Fisher, Jr, PhD with over 25 years professional experience, Dr. William P. Fisher, Jr. has developed a complementary array of skills focused on improved information quality and systems in health care and education. He is internationally recognized for contributions to both ends of the theoretical-philosophical to practical-analytic spectrum. Dr. Fisher's recent work explores possibilities for and projects likely consequences of equating tests and surveys measuring the same constructs, so that all instruments in an area measure in the same unit of comparison and with known uncertainty characteristics.

Jane F. Sumner, Ph.D, RN, APRN, BC has been investigating caring in nursing for many years because of her varied experiences in practice over 48 years. Her original nursing education was in New Zealand and her 3 university degrees are from the US. For the last 19 years she has been a nurse educator.
Theory, Care, and Nursing:
The Capital Value of a Practical Synthesis
William P. Fisher, Jr., Ph.D.
Jane F. Sumner, Ph.D, RN, APRN, BC
University of California, Berkeley and Lousiana State University, New Orleans
wfisher@berkeley.edu, jsumne@lsuhsc.edu

Abstract
In the history of science, predictive theories enabling accurate and confident innovations typically emerge only after phenomena can be represented and reproduced consistently in standardized forms. These technological forms are structural transformations of the original forms of life from which meaning was poetically and metaphorically abstracted. A new basis for theoretical and practical developments in caring in nursing follows from close consideration of the experience of physis, spontaneously self-organizing natural processes. The physis of a wide array of nursing constructs exhibits consistencies likely to lend themselves to standardized technological representations. If they do, new horizons should emerge for theory development and innovation around nursing’s human and social capital. Probabilistic Rasch models making use of sufficient statistics and requiring separable parameters will be of significant value. How to retain a close connection with the original meaning-giving sources in physis will be a matter of ongoing concern.
Framing the Problem

Background. “There is nothing so practical as a good theory” (Lewin, 1951, p. 169). Good theory provides explanatory power, predictive control, efficiency, and confidence that a phenomenon is as thoroughly understood as it needs to be for practical purposes. In the history of science, good theories almost always emerge from social networks sharing standardized technology and instrumentation (Bijker, Hughes, and Pinch, 2012; Bud and Cozzens, 1992; Daston and Galison, 2007; Hankins and Silverman, 1999; Ihde, 1991, 1998; Latour, 1987, 2005; Wise, 1995). Historically, scientific productivity is maximized when phenomena can be consistently reproduced for controlled study, and information is shared within a community of practice in standardized terms, images, and metrics. It seems that individual and group learning and innovation often depend extensively on opportunities to engage with others in the repetitive play of structured games (Barab, Scott, Siyahhan, Goldstone, Ingram-Goble, et al., 2009; Crease, 1993; Wise, 1995). This behavioral and cognitive orientation persists even when the rules of the games played are not well defined, and winning becomes less associated with the desired outcomes of scientific or economic advancement than with secondary outcomes presenting mere appearances of new learning and productivity (Bakker, van Dijk, Wicherts, 2012; Gertler, 2010).

The creative power of social networks in technological, business, political, and artistic innovation is very much of contemporary cultural interest globally. The exercise of that power, however, is nothing new, as it has driven industrial, scientific, and democratic revolutions for centuries. Innovation has always been a team sport in some respects, but its team characteristics have become of increasing relevance as the technology for networked communications has proliferated (Degen, 2009). One of the most important lessons of technology’s ubiquitous presence is that generalizable creativity depends on systemically shared and complementary
moral, economic, and scientific values (Schaffer, 1992; Zak, 2008), taking these as both guides to right thinking and acting, as well as standardized numeric metrics and common currencies.

A fundamental barrier to the conceptualization and formation of shared values is the assumption that qualitative and quantitative data and methods entail paradigmatically distinct philosophical commitments (Bryman, 2007; Moffatt, White, Mackintosh, and Howel, 2007). On the contrary, "a good implicit phenomenology is often concealed in the most objectivistic sciences” (Ricoeur, 1967a, p. 219). The apparent ontological divide between qualitative and quantitative methods may then be only an artifact of unnecessary assumptions, and not an inherent structural feature of the scientific landscape (Fisher, 2003a, 2003b, 2004, 2010; Fisher and Stenner, 2011). Nursing, of course, attends to human care needs, and accordingly has to account for a complex array of physical, chemical, biological, psychological, and social factors not easily reduced to a simple, standardized model. Theory development has been characteristically more qualitative, hermeneutic and phenomenological (Benner, 1994, 2001; Dunlop, 1986; Sumner, 2001, 2006; Watson, 1999) and has understandably, then, not proceeded in nursing as it did in physics.

It may, however, be worthwhile to consider the problems of simplification and theory development from a fresh point of view. Recent studies of model-based reasoning processes in the history of science (Nersessian, 2002, 2008) illustrate the productive use of analogies by James Clerk Maxwell, for instance, in the development of electromagnetic theory. Metaphor has been found ubiquitous in discourse, including in science and engineering, with the effect of rendering discovering and invention poetic (Black, 1962; Brown, 2003; Lakoff and Johnson, 1980). This kind of research suggests that nursing may harbor phenomena not previously examined in terms of their viability as objects of study amenable to analogical models and
processes for validating them. In fact, because its primary raison d’être centers on care and caring, which are characteristic of a quintessentially human mode of being, nursing may have an opportunity to make a particularly unique and powerful contribution to the development of a new kind of art and science.

But what are the unexamined phenomena nursing could more productively focus on? What kind of theoretical developments are possible that are not yet on the record or being pursued? How are the relevant phenomena to be identified? It may help to look to the history of science for a starting point. A source for an analogical perspective is provided by de Solla Price (1986, p. 240), who observed,

Historically, we have almost no examples of an increase in understanding being applied to make new advances in technical competence, but we have many cases of advances in technology being puzzled out by theoreticians and resulting in the advancement of knowledge. It is not just a clever historical aphorism, but a general truth, that 'thermodynamics owes much more to the steam engine than ever the steam engine owed to thermodynamics.'

An instance of supporting evidence is provided by Kuhn (1977, p. 90), who noted that seven of the nine theoreticians who succeeded at least partially in quantifying energy conversion processes were engineers or were working directly on engines when they made their contributions to the physics of energy conservation.

In nursing, care is a primary focus of both practice and theory. Nursing theoreticians tend to be practicing nurses with firsthand experience in observing the association of care with healing. Other nursing theoreticians may be practicing teachers who routinely observe the effect of their care and attention on the progression of learning in students. There is, however, of course
nothing like a care engine that mechanically functions in a physically predictable way, and that could be experimentally studied and manipulated in accord with engineering principles. But this literal analogy could be subtly configured in terms of a more ontologically appropriate metaphor drawn from the ancient Greek concept of *physis*.

In nursing, *physis* is understood in terms of the natural and spontaneous healing and growth experienced as a result of good nutrition, sleep, and hygiene (Wynn, 2006). The term is also taken to refer to the satisfaction a nurse can experience in the knowledge of having provided effective quality care (Sumner, 2010). As a philosophical concept, however, *physis* concerns natural processes of coming into and going out of existence. *Physis* is the unsought, poetically emergent creation and destruction of beings, something that comes from within these beings themselves, in the manner of a flower, blooming. *Physis* stands in clear contrast with the ready availability of technological devices and methods for the automatic, effortless production and consumption of commercial goods (Heidegger, 1977, p. 10; Glazebrook, 2000, pp. 164-165).

There is a tendency in the modern world to assume that technology defines existence, and that all important problems have been or will be solved by means of technology. Art, poetry, music, handicrafts, and natural wilderness are often experienced as reminders of a lost connection with the earth or a spiritual realm, and they also often convey the feeling that there is little or nothing that can be done to restore what has been lost.

But awareness of *physis* and the methodical application of technique both nonetheless follow from a concern with care. To the extent that one engages in dialogue and negotiation instead of violence and domination, consideration for another’s human vulnerability has been shown, a choice in favor of caring has been made, and at least some trace of an experience of *physis* is obtained (Gadamer, 1991, p. 61; Habermas, 1995; Heidegger, 1962; Irigaray, 1984;
Ricoeur, 1967b). Even in the context of contemporary nursing practice, which can at times seem awash with technological fixes and immutable control mechanisms, high quality care is still a goal and is often achieved (Locsin, 2005; Sumner, 2008).

Despite the persistent evidence of *physis* in nursing, the fundamental value of nursing care in creating and increasing human and social capital is elusive and remains largely unaddressed (Royal, 2012). Though an artful apprehension of the value of *physis* in nursing care (Wynn, 2006) is of great value for symbolizing the safeguarding of care, there is a longstanding and increasingly urgent need for a poetic crafting of a new root metaphor that resonates with and captivates the imaginations of everyone providing and affected by that care. Most pointedly, instead of remaining uncritically rooted in assumptions of what it means to assign value methodically in nursing practice, in nursing education, or in a nursing research study, those methods must themselves be broken down to their own authentic expressions of *physis* and then reconstructed to meet the needs for new representations (Sumner, 2001, 2006, 2008; Sumner and Fisher, 2008). Put more directly, cynical games played with meaningless, locally varying ordinal scores and underpowered p-values as means to the ends of publication and promotion (Bakker, et al., 2012) must be replaced with authentic play involving meaningful, globally invariant interval measures and substantively significant, reproducible outcomes.

Ricoeur, 1981, pp. 182-193). The unexamined phenomena nursing needs to advance the theory and practice of care reside in the *physis* that can be found and created in the repeated self-organization of regular patterns in data recorded as responses to questions on patient surveys, student tests, and clinical assessments. These questions can be intentionally designed, so far as possible, to reveal or construct reproducible patterns interpretable as evidence that the construct measured exists as an identifiable entity in the world. Once established as persisting as repeatedly identifiable objects of conversations, these patterns could form the basis for a new technological embodiment of the *physis* of caring, which in turn could provide a context in which the nursing profession could collectively puzzle out improved theories of caring.

Method here recovers its root sense of following along after (*meta-*) the object of inquiry on the path (*odos*) it takes up of its own accord. Hence, Gadamer (1989, p. 460) points out that in method, properly understood, "what thought experiences is the movement of the thing itself." He continues, observing that

The Greeks...did not conceive understanding as a methodic activity of the subject, but as something that the thing itself does and which thought 'suffers.' This activity of the thing itself is the real speculative movement that takes hold of the speaker. We have sought the subjective reflection of it in speech. We can now see that this activity of the thing itself, the coming into language of meaning, points to a universal ontological structure, namely to the basic nature of everything toward which understanding can be directed. *Being that can be understood is language.* The hermeneutical phenomenon here projects its own universality back onto the ontological constitution of what is understood, determining it in a universal sense as *language* and determining its own relation to beings as interpretation. (pp. 474-475)
Physis can be methodically apprehended, appropriated, and embodied in a technique, however, only to the extent that "The first concern of all dialogical and dialectical inquiry is a care for the unity and sameness of the thing under discussion" (Gadamer, 1991, p. 61; original emphasis). Thus, the focus of physis-oriented research on patient care needs, on student care instruction, and on nursing care competency begins from the identification of constant patterns stable enough to be repeatedly recreated across different local conversations involving different people at different times and places asking different questions that nonetheless still all pertain to a single construct.

Establishing the existence of these patterns of invariant regularity is, however, only the beginning of this kind of research. A new paradigm for nursing research and practice based in careful attention to the physis of care cannot simply rework existing concepts of validity and reliability; it must begin with a fresh orientation to goals not previously pursued in systematic ways. The overarching methodological framework must be phenomenological, but in the existential sense of focusing on the cycle of reduction, application, creative destruction, and return to reduction described by Heidegger (1982, pp. 19-23, 320-330; Marion, 1998; also see Fisher, 2010; Fisher and Stenner, 2011).

Though they are necessary to the advancement of knowledge, the identification and local study of these patterns of invariance are not sufficient in themselves to the task. Stopping with this reductive moment in the movement through the method is a failure to follow through with enough care for the physis experienced to extend it to others for application. As Ricoeur (1967b) puts it, to cut off the conversation in this way commits the violence of the premature conclusion. Most research employing factor analysis or statistical analysis of ordinal scores makes untenable assumptions about the meaning of the numbers studied, and more importantly fixes the meaning
of the results in relation to the particular questions asked and the particular persons answering them. This inability to leave the question open, in the sense of supporting transparent comparability with other studies of the same construct, is the fundamental shortcoming of what passes for quantitative methods in most mainstream research in nursing employing test, survey, and assessment data. Science is supposed to be an accumulation of aggregate knowledge, but even when results are comparable across samples and instruments, researchers usually fail to make those comparisons (Fisher, 1997, 1999).

To arrive at a place from which the collective intelligence of the field of nursing can be focused and harnessed—to meet the challenges of advancing theory and practice—standards are essential. Everyone involved must be able to know when they are experiencing the phenomenon they intend to experience, and they must be able to see how much of it there is. Standardized terms, images, and metrics must be devised for the things themselves to be brought into language as shared objects in the real world. The universality of scientific phenomena is not spontaneously and effortlessly created from the experience of *physis*. Things do not automatically pop into language in some self-initiated and instantaneous way. As Gadamer says, being that can be understood is language, but that does not mean things come into language all by themselves. Rather, quite significant resources must be invested in standardization to give a tangible, material form to the otherwise unenculturated phenomena apprehended when an invariant pattern first presents itself (Hunter, 1980; Latour, 1987, p. 251).

Standardization makes it possible for observers of the phenomenon to use the same language in referring to it, reducing the opportunities for confusion that arise when different words, images, and numbers are used to refer to the same thing. Persistent quantitative patterns can be fixed in standard metrics to which all instruments measuring the construct are linked. In
the history of science, metrological networks have been a means by which communities of research and practice have united themselves in common purpose and have achieved extraordinary results (Latour, 1987, pp. 247-257, 2005; Hunt, 1994; Kuukkanen, 2011; Wise, 1995). In the context of the phenomenological method’s careful sensitivity to appropriating the experience of physis, it is essential to set up metrological systems that distribute the media of a shared frame of reference to everyone interested in participating in it. Existing examples of such media for shared frames of reference include clocks, rulers, thermometers, weight scales, speedometers, etc.

This may sound like a high standard to achieve, and it is. Achieving it would be an unprecedented accomplishment in the human and social sciences. It is true that data exhibiting invariant patterns of the kind described here are commonly produced in high stakes tests and research in education, psychology, and health care employing a variety of probabilistic models (Rasch, 1960, 1977; Andrich, 1978, 2004; Bezruzcko, 2005; Bond and Fox, 2007; Fisher and Wright, 1994; Wilson, 2005; Wright, 1977, 1999). Nursing has a fairly extensive history of research and licensure applications employing models requiring data exhibiting the characteristics of physis (Fox, 1999; Hagquist, Bruce, & Gustavsson, 2009; Holm & Kavanagh, 1985; Lee and Fisher, 2002; O’Neill, Marks, and Reynolds, 2005; Smith, Conrad, Chang, & Piazza, 2002; Sumner & Fisher, 2008), though the possibilities for capitalizing on physis in this context has not been generally appreciated for its particular value (Strickland, 2002).

The local definitions of invariant constructs described in some instances of measurement research and practice do not make their full value evident because nothing is done to link results together in a shared framework of common standards. Even when multiple separate calibrations of different instruments measuring the same thing, or of the same instrument calibrated on
different samples, are available in the published literature of a field, comparing or equating the available metrics is rare (Fisher, 1997, 1999). It seems as though the idea of science as an accumulated compendium of learning has been lost.

The full value of local instrument calibrations can be realized only if and when the invariant patterns identified are represented systematically in an interconnected network of point-of-use applications unified by standards (Fisher, 2012; Fisher, Harvey and Kilgore, 1995; Fisher, Harvey, Taylor, Kilgore, and Kelly, 1995; Stenner and Smith, 1982; Stenner and Stone, 2010). Of course, to arrive at a new system of that sort, existing systems of research and practice that are not organized around coordinated expressions of physis must be replaced using the processes of creative destruction deployed in the third moment of the phenomenological method. Those conversations will not be likely to occur until dissatisfaction with the anomalies and inconsistencies of the existing paradigm coalesce into a broad movement in which firm conceptions of the first two moments are in place.

Ontological Midwifery of Care

Situating caring in a “transpersonal framework of conscious intentionality,” Watson (1999, pp. 237, 243-259) notes that postmodern analyses and concepts often fail to move beyond critical evaluations of failed philosophies or methods to new ways of constructing possibilities for healing environments. If, following Watson, nurses are to be able to assume roles as “ontological architects” designing and inhabiting healing spaces, they will need (a) a more tightly interwoven and systematic integration of ontology and method, and (b) a new science of ontological research and development to support them.

Ontology, as the logic of existence and of how things come into being, becomes methodological when the physis of a form of life is captured or recorded, and is made routinely
repeatable. The ontology of care is, however, specifically focused on living being, as opposed to mechanical building materials. Architectural space is an apt metaphor for the configuration of attitudes, skills, and relationships needed to create a healing environment. The metaphor falls short, however, in its implications as they are pursued into the details of nursing practice. Consistent methodological principles follow more directly from the metaphor of the Socratic midwife than they do from the mixed metaphor of “ontological architects.”

Socrates’ dialectical method was intended to ensure that his students’ and colleagues’ conceptual offspring would be born with the metaphoric equivalents of good eyes, straight noses, and ten fingers and toes (Plato, 1961, pp. 853-856, or 149 ff. in standard Stephanus pagination). So, too, must nursing attend to the midwifery of both caring practitioners able to take on lives of their own as professionals, and of caring processes and outcomes able to bring patients back to their productive, interdependent lives.

How can ontological midwifery be systematically focused on caring in nursing? There would seem to be an almost unspannable breach between the ontological assumptions of contemporary measurement practice in nursing and the qualitative depiction of the practical demands experienced in managing care, as is described in other contexts by Bryman (2007) and Moffatt, et al. (2007). Recent texts (such as Watson, 2009) on measuring caring in nursing show that nursing has not yet recognized or adopted to a significant degree relevant advances in measurement theory and practice made over the last several decades, though there are some exceptions (Fox, 1999; Hagquist, Bruce, & Gustavsson, 2009; Holm and Kavanagh, 1985; Lee and Fisher, 2002; O’Neill, Marks, and Reynolds, 2005; Smith, Conrad, Chang, & Piazza, 2002; Sumner & Fisher, 2008). A significant and unaddressed challenge then concerns how to better
inform nursing’s ontological aspirations with improved methods that remain authentically connected with its caring mission.

Husserlian phenomenology became the method of ontology and of scientific philosophy in Heidegger’s (1982) critical synthesis, though Husserl himself contributed more to that synthesis than has generally been recognized (Marion, 1998, pp. 43-51, 143-146). Heidegger, like many who came later in 20th century Continental philosophy, focused extensively on the third, creatively destructive or deconstructive moment in the ontological method, to the near exclusion of the other two moments, reduction and construction. As Heidegger (1982, pp. 19-23, 320-330) and Derrida (2003, p. 62) recognized, however, engagement with the processes of reduction and construction is unavoidable in that writing itself reduces infinite potentials to a limited text, and inherently involves the positive intention to express some kind of meaning (Caputo, 1997, p. 80; Fisher, 2010; Ruin, 2011, p. 80).

The iterative cycling through the process of reduction, application, and creative destruction is not so much a technique, however, as it is the irreducible whole of authentic method itself. The (Gadamerian) Socratic midwife welcoming the birth of new life and comforting the afflicted is complemented by the (Derridean) Socratic gadfly afflicting the comfortable by creatively destroying hidden preconceptions (Risser, 1989). Similarly, Kuhn (1970) distinguishes between method as it is linearly presented in textbooks and method as it is lived by researchers experiencing new forms of physis in the laboratory. Tracing the emergence of new methods through the primary journal literature reveals the process of trial and error through which phenomena come into the world as new entities.

Gadamer (1989, pp. 101-134) points to play as the most important clue to understanding the nature of method. Echoing Husserl’s intention to attend to things themselves and Hegel’s
arguments against inauthentic externally-imposed methodologies, Gadamer elaborates a sense of method as following along (meta-) the path (odos) described by phenomena as they are experienced. The repetitive back and forth of questions and answers, experimental trials and errors, playfully absorbs the observer into a participatory role and a partner in the creation of meaningful representations (Toulmin, 1982).

The metaphor of Socratic maiuetics supports and informs nursing’s ontological midwives by providing a fertile context for conceiving, gestating, birthing, and nurturing living meaning. Caring in nursing is not only the field’s defining activity, caring is fundamental to human being. The choice between peaceable negotiation and violent impositions of will hinges on caring enough to try to create shared meaning, and begins from love (Fielding, 2003; Irigaray, 1984; Marion, 2007; Ricoeur, 1967b).

Caring as the Midwifery of Living Meaning

For our purposes here, human and social capital are taken to include nurses’ own skills, motivations, health, and trustworthiness, as well as that of their patients. Though human and social capital have been a focus of interest of workers in the nursing context (Kritsotakis & Gamarnikow, 2004; Lauder, Reel, Farmer, & Griggs, 2006; Royal, 2012), little or no attention has been paid to how the very low efficiency of the respective markets might be improved. Measurement costs are a primary source of this inefficiency (Barzel, 1982; Benham and Benham, 2000), as their insurmountably high levels cause most human and social capital investment decisions to be made on the basis of little, no, or mistaken information (Fisher, 2011, 2012; Goldberg, 2009).

The concept of capital is important to nursing because it focuses close attention on the varied types of human, social, and economic value created in nursing (Covell, 2008; Gopee,
Qualitative descriptions and evaluations of human and social capital are important foundational steps to take toward creating uniform standards for quantifying their value. Despite the meaning of the term “capital,” however, its application to date to human and social assets (Becker, Coleman, 1988) remains an empty metaphor: amounts of skill, motivation, health, or trust are not expressed in standard units in the way property and commodities are, and neither can these forms of capital be associated with a known market value. If intangible assets are to be priced in accord with their value, if they are to pay appreciable returns on investment, and if they are to ever be included as significant factors in economic models, they will have to be quantified. Authentic quantification embodying the principles of ontological midwifery is one way vigilant attention can be focused on meaningful representations.

How might caring human and social capital in nursing be conceived, midwifed, and nurtured to a fuller maturity? The efficiency of capital markets depends on metrological standards like common currencies and common product definitions well known for their value in reducing the costs encountered in negotiating even the simplest transactions (Barzel, 1982; Benham & Benham, 2000). Markets for property and manufactured goods are highly efficient because value can be readily ascertained via socially sanctioned and scientifically developed universally uniform standardized measures. Human and social capital, however, are needlessly dysfunctional in highly inefficient markets because of the common but resolvable difficulties associated with determining and representing value (Fisher, 2009, 2011, 2012). Better measurement is key to overcoming these difficulties.

A place to start in exploring possibilities for ontological midwifery in nursing is suggested in the realization that the physis experienced in the teaching, provision, and management of care
could be construed as the living DNA of a meaningful social body and collective intelligence. Projecting and elaborating models of this kind involve positing abstract mathematical ideals as heuristic fictions guiding inquiry (Butterfield, 1957; Ihde, 1991; Kuhn, 1961; Nersessian, 2002, 2006). Model-based reasoning processes in science are not qualitatively different from the way words and concepts are used in everyday language (Nersessian, 2006, 2008; Fisher, 2004).

Models, like words, project unrealistically perfect conceptualizations of relationships between distinct and separate unitary phenomena. No data or observations ever conform perfectly to the models’ heuristic fictions. Perfect circles cannot be drawn, there are no mathematical pendula made of a weightless string and a point-like mass, and there are no ability test data affected only by the difficulties of the questions asked and the abilities of the persons measured.

Given such models and data that more or less fit them, instruments embody each separate phenomenon’s perceptual profile and can do so in measuring units that are, first, experimentally determined to be of a constant size, and, second, can be expressed in a standardized numeric metric. These determinations of unit size and their standardization are facilitated by the Rasch measurement models widely employed in educational assessment and professional licensure, that are increasingly applied in health care research at large, and that have seen some limited use within nursing research and practice.

Beyond the determination of invariant units, the support Rasch models offer for realizing the goal of an ontological midwifery in nursing includes

- the mapping of qualitative learning progressions and therapeutic continua useful in theory development and in designing curricula and treatment programs as these are defined by the invariant order of the item hierarchies established via instrument calibration;
- the equating of different instruments experimentally shown to measure the same thing;
• the adaptive administration of those instruments, such that items may be chosen for use according to qualitative and/or quantitative criteria without compromising either the unit or the error of measurement;

• the theory-informed modification of existing instruments via the removal or addition of items, again without compromising the comparability of the unit of measurement;

• the removal of rater severity and leniency as factors influencing measures; and

• the capacity to estimate measures in a standardized unit on the fly at the point of use, with no need for data computerization, storage, analysis, and reporting.

Care for the quality, meaning, and practicality of measures is an important way of following Nightingale’s advice as to putting “the patient in the best condition where Nature can heal” (quoted in Watson, 1999, p. 258). The non-physical subtleties of energy and mood that must be coordinated and mediated to create this condition inevitably must involve the matching of caring skills with caring challenges, matching that could be more efficiently facilitated over the course of nursing education and practice through the judicious construction of an array of well-tuned instruments. Properly situated within a problem-focused methodological pluralism (Dawson, Fischer, & Stein, 2006), care for the unity and sameness of the objects of healing conversations can nurture the smallest seeds of possibility into fruitful trees of realized productivity.
References.


